翻訳と辞書
Words near each other
・ Hypermobility (joints)
・ Hypermobility (travel)
・ Hypermodern Jazz 2000.5
・ Hypermodernism
・ Hypermodernism (art)
・ Hypermodernism (chess)
・ Hypermodernity
・ Hypermorphosis
・ Hypermultiplet
・ Hypermusic
・ Hypernaenia
・ Hypernasal speech
・ Hypernatremia
・ Hypernauts
・ HyperNEAT
Hypernetted-chain equation
・ HyperNext
・ Hyperno
・ Hypernorms
・ Hypernova
・ Hypernova (album)
・ Hypernova (band)
・ Hypernucleus
・ Hyperoartia
・ Hyperochus
・ Hyperoctahedral group
・ Hyperodapedon
・ Hyperodapedontinae
・ Hyperoffice
・ Hyperoglyphe


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hypernetted-chain equation : ウィキペディア英語版
Hypernetted-chain equation
In statistical mechanics the hypernetted-chain equation is a closure relation to solve the Ornstein–Zernike equation which relates the direct correlation function to the total correlation function. It is commonly used in fluid theory to obtain e.g. expressions for the radial distribution function. It is given by:
:
\ln y(r_) =\ln g(r_) + \beta u(r_) =\rho \int \left(- \ln g(r_) - \beta u(r_)\right ) h(r_) \, d \mathbf is the number density of molecules, h(r) = g(r)-1, g(r) is the radial distribution function, u(r) is the direct interaction between pairs. \beta = \frac with T being the Thermodynamic temperature and k_ the Boltzmann constant.
==Derivation==
The direct correlation function represents the direct correlation between two particles in a system containing ''N'' − 2 other particles. It can be represented by
: c(r)=g_(r) - g_(r) \,
where g_(r)=g(r) = \exp(w(r) ) (with w(r) the potential of mean force) and g_(r) is the radial distribution function without the direct interaction between pairs u(r) included; i.e. we write g_(r)=\exp\. Thus we ''approximate'' c(r) by
: c(r)=e^- e^. \,
By expanding the indirect part of g(r) in the above equation and introducing the function y(r)=e^g(r) (= g_(r) ) we can approximate c(r) by writing:
: c(r)=e^-1+\beta() \,
= g(r)-1-\ln y(r) \,
= f(r)y(r)+(y(r) ) \,\, (\text),
with f(r) = e^-1.
This equation is the essence of the hypernetted chain equation. We can equivalently write
:
h(r) - c(r) = g(r) - 1 -c(r) = \ln y(r).
If we substitute this result in the Ornstein–Zernike equation
:
h(r_)- c(r_) = \rho \int c(r_)h(r_)d \mathbf_,
one obtains the hypernetted-chain equation:
:
\ln y(r_) =\ln g(r_) + \beta u(r_) =\rho \int \left(-\ln g(r_) - \beta u(r_)\right ) h(r_) \, d \mathbf{r_{3}}. \,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hypernetted-chain equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.